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ABSTRACT

The robustness of a microbial growth model must be assessed before the model can be applied to new food matrices;
therefore, a methodology for quantifying robustness was developed. A robustness index (RI) was computed as the ratio of the
standard error of prediction to the standard error of calibration for a given model, where the standard error of calibration was
defined as the root mean square error of the growth model against the data (log CFU per gram versus time) used to parameterize
the model and the standard error of prediction was defined as the root mean square error of the model against an independent
data set. This technique was used to evaluate the robustness of a broth-based model for aerobic growth of Escherichia coli
O157:H7 (in the U.S Department of Agriculture Agricultural Research Service Pathogen Modeling Program) in predicting
growth in ground beef under different conditions. Comparison against previously published data (132 data sets with 1,178
total data points) from experiments in ground beef at various experimental conditions (4.8 to 458C and pH 5.5 to 5.9) yielded
RI values ranging from 0.11 to 2.99. The estimated overall RI was 1.13. At temperatures between 15 and 408C, the RI was
close to and smaller than 1, indicating that the growth model is relatively robust in that temperature range. However, the RI
also was related (P , 0.05) to temperature. By quantifying the predictive accuracy relative to the expected accuracy, the RI
could be a useful tool for comparing various models under different conditions.

Predictive microbial models are powerful tools for en-
suring microbiological safety and quality of foods (3, 4, 15,
21, 26) and for helping processors comply with federal reg-
ulations. They also are useful for the effective implemen-
tation of hazard analysis and critical control point pro-
grams, microbial risk assessment (9, 15), and decision sup-
port in various aspects of microbial food safety and quality
(20, 27).

Quantitative microbial risk assessment for the fate of
pathogens in food products should include only predictive
models for pathogen growth, survival, and inactivation that
are valid across the entire domain of relevant products and
processes (25). However, experimental data and associated
growth models are rarely available to account for all of the
relevant variables and the range of conditions for a specific
microorganism, product, and process being analyzed. Ex-
trapolation of a microbial model to conditions not specifi-
cally tested in the original modeling experiments is fun-
damentally undesirable if the model is not validated for
those conditions. For example, extrapolation can imply ap-
plication of a model outside the original temperature do-
main or with different substrates (e.g., actual food products
versus laboratory broth). Therefore, before a predictive
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model can be used for practical applications, it is important
to determine its range of applicability and to understand the
limits of its validity. Models always should be validated
against data independent of those used to create the model.
Broth-based models must be shown to accurately predict
microbial response in actual foods during processing, stor-
age, and distribution (19).

The term robustness is used here to describe how well
a microbial model actually predicts future events (indepen-
dent of those used to create the model) relative to expec-
tations of its performance. A model is robust when it has
a broad domain of validity and accuracy comparable to that
expected based on model development. Other authors have
used performance evaluation (16, 19), validation (18, 24),
and evaluation (10, 17) to assess model performance.

Predictive models can be validated by using subsets of
the data from which the model is derived (13), new labo-
ratory data, other data from literature, or trials in industry
(16). Observed data and predicted values can also be com-
pared by graphical methods or by indices of performance.

Ross (19) introduced two indices, the accuracy factor
(Af) and bias factor (Bf), to evaluate the performance of
predictive microbial models. The accuracy factor indicates
the level of confidence in the prediction of the model and
is given by the equation

[S zlog(m̂/m) z/n]A 5 10 (1)f

where and m are the predicted and observed growth mod-m̂
el parameters (e.g., generation time or growth rate), re-



J. Food Prot., Vol. 68, No. 112302 CAMPOS ET AL.

spectively, and n is the number of observations used in the
calculation. The bias factor assesses whether the model dis-
plays any bias that could lead to fail-safe or fail-dangerous
predictions and is given by the equation

[S log(m̂/m)/n]B 5 10 (2)f

Baranyi et al. (2) suggested a refinement of Af and Bf by
making the mean square difference between predictions and
observations the basis of Af :

 
2 (ln m̂ 2 ln m)O A 5 exp Î and (3)f  n 

 (ln m̂ 2 ln m) O
 B 5 exp (4) f n 

They also extended the use of the modified indices by cal-
culating the integral mean of the square differences between
alternative microbial growth models under investigation
over the domain of environmental factors, which enabled
comparison between these models and with observations.

Several other methods for model evaluation have been
reported. Wijtzes et al. (28) constructed plots from pub-
lished generation time data of Listeria spp. against the cor-
responding predictions of a model derived from studies in
laboratory broth. Predictions were evaluated, and the over-
all reliability of the model was examined through visual
inspection of the plot. Duh and Schaffner (13) developed
predictive equations for Listeria spp. growth rate based on
measurements in broth. Corresponding published data on
food were then added to the data set used to generate the
model, and regression analysis was performed. The close
similarity of the mean square error and the r2 values of the
equations fitted to either data set were taken as an indication
of the reliability of the model. McClure et al. (14) simply
computed the sum of the squares of the differences of the
natural logarithms of observed and predicted values as a
performance measure of predictive models. Delignette-
Muller et al. (11) computed the relative error based on the
observed values and suggested that the calculated mean ab-
solute relative error of a model is a good indicator of pre-
diction accuracy.

In all of these studies, however, predicted values from
secondary models (e.g., growth rate or generation time)
were compared with independent data for assessing predic-
tive performance. Experimental results were not compared
with predicted microbial counts, which are a product of
both primary and multiple secondary models. For example,
Mellefont et al. (16) used the indices developed by Ross
(19) and compared the observed and predicted generation
time in evaluating the performance of a square root–type
model describing the growth rate of Escherichia coli as a
function of temperature, water activity, pH, and lactic acid
concentration. However, if predictive microbial growth
models are to be used in risk analyses or for other appli-
cations, it is essential to know how well the complete model
(i.e., primary plus secondary) predicts microbial counts,
which is actually the ultimate measure of product safety.

Traditionally, predictive models have been analyzed
statistically by comparing the goodness of fit to the data
used to generate them (1, 29, 30). Established procedures
described in many textbooks (12) are then used to deter-
mine whether the fitted model is acceptable relative to the
measurement error inherent in the data. This approach is
statistically sound; however, the robustness of a microbial
model relies on how well it can predict independent results
and those derived under conditions that were not specifi-
cally included in the estimation of the model parameters
(15). This flexibility is particularly important for broth-
based models, which often are used to predict microbial
responses in actual food products. Therefore, the objective
of this work was to propose and test a quantitative measure
of robustness for predictive microbial models based on the
expected and actual performance in predicting microbial
populations.

MATERIALS AND METHODS

The robustness index. In this work, we propose a robustness
index (RI), defined as the ratio of the standard error of prediction
(SEP) to the standard error of calibration (SEC) for a given mi-
crobial model:

SEP
RI 5 (5)

SEC

where SEC is the root mean square error of the growth model
against data used to generate the model,

n1
2(y 2 ŷ )O i i

i51ÎSEC 5 (6)
n1

and SEP is the root mean square error of the model against an
independent data set:

n2
2(y 2 ŷ )O j j

j51ÎSEP 5 (7)
n2

where

ŷi, ŷj 5 predicted value corresponding to ith or jth data point
(log CFU/g)

yi 5 value of ith experimental data point used to develop
the model (log CFU/g)

yj 5 value of j th experimental data point from an inde-
pendent data set (log CFU/g)

n1 5 number of data points used to develop the model
n2 5 number of observed data points from an independent

set

There are two key features of the RI. First, it quantifies the
predictive accuracy of the model (SEP) relative to the expected
accuracy (SEC). Second, unlike the previous related studies (2,
11, 13, 14, 19, 28) where primary model parameters were used
to describe a model’s predictive performance, actual microbial
counts from growth experiments (log CFU per gram versus time)
were used in computing RI. Lower RI values (less than approxi-
mately 1) indicate a robust model, with very good accuracy
against independent data (upon which the SEP is calculated), com-
pared with the expected accuracy based on the data used in pa-
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rameterizing the model (upon which the SEC is calculated). An
RI was calculated for each independent data set.

The overall robustness index was also calculated to quantify
overall predictive accuracy of the model relative to the expected
accuracy (SEC) using the combined observed data from all in-
dependent sets in the study:

Ntotal
2(y 2 ŷ )O k k

k51Î
Ntotal (8)Overall RI 5

SEC

where

Ntotal 5 combined total number of observed data points in
all independent sets

ŷk 5 predicted value corresponding to kth data point (log
CFU/g)

yk 5 value of kth experimental data point from combined
independent sets (log CFU/g)

The mean relative error (RE), a variant of the value described
by Delignette-Muller et al. (11), also was calculated for each data
set. The RE indicates whether the model, on average, displays any
bias toward fail-safe or fail-dangerous predictions. The mean RE
is given by the equation

n ŷ 2 yj jO 1 2ŷj51 j
RE 5 (9)

n

A positive RE indicates that the model overpredicted the inde-
pendent data.

Broth-based, aerobic growth model for E. coli O157:H7.
To illustrate the proposed methodology, the aerobic growth model
for E. coli O157:H7 found in the Pathogen Modeling Program
(PMP) version 7.0 (U.S. Department of Agriculture, Agricultural
Research Service, Eastern Regional Research Center, Philadel-
phia, Pa.) was used as a test case. This model was parameterized
using 336 sets of data (2,934 data points) (5–8) from laboratory
media (broth) and is assumed to provide conservative estimates
of pathogen growth because it was based on a pure culture system
(a mixture of E. coli O157:H7 strains 933, 45753-35, and A9218-
C1) containing high concentrations of nutrients and no competi-
tive microbial flora (7). In the present study, these original data
were retrieved from ComBase (www.combase.cc). The primary
model is a Gompertz equation, and the secondary models for lag
phase duration and generation time are quadratic response surface
models describing the effects of temperature (5 to 428C), initial
pH (4.5 to 8.5), sodium chloride concentration (5 to 50 g/liter),
and sodium nitrite concentration (0 to 200 mg/ml), which were
expanded from the work of Buchanan et al. (7). These original
broth-based data were used to calculate the SEC in this study.

Independent validation data from ground beef. A total of
132 published data sets (1,178 data points) for growth of E. coli
O157:H7 in ground beef were used to evaluate the predictive per-
formance of E. coli O157:H7 aerobic growth models from the
PMP. Most of these data (124 sets), which included actual micro-
bial log counts, were taken from records in ComBase
(www.combase.cc) and from work at the U.S. Department of Ag-
riculture, Agricultural Research Service, Eastern Regional Re-
search Center (22), and the rest (8 sets) were extracted from pub-
lished studies (21, 23, 24). The temperature ranged from 4.8 to

458C, pH ranged from 5.5 to 5.9, and water activity (aw) was
assumed to be 0.99 because all data were from ground beef with-
out additives.

RESULTS

The SEC for the aerobic growth model of E. coli O157:
H7 in PMP 7.0 was 1.56 log CFU/g, computed by applying
equation 6 to all of the original broth-based data used in
developing the model. This value represented the root mean
square error of the model against the broth-based data used
to estimate the model parameters.

The RI values of the broth-based PMP growth model
for E. coli O157:H7 against independent data for growth
of E. coli O157:H7 in ground beef were calculated using
equations 5, 6, and 7. These RI values ranged from 0.11 to
2.99 (Table 1). The minimum RI (0.11) was for growth
experiments conducted at 88C, pH 5.8, and water activity
of 0.99. The maximum RI (2.99) was for experiments con-
ducted at 4.88C, pH 5.8, and water activity of 0.99. The
overall RI (equation 8), computed for the aggregate of all
the independent data, was 1.13.

Values of the mean RE, computed using equation 9,
ranged from 20.50 to 0.52 (Table 1). Of the total indepen-
dent data sets considered in this study, 63% yielded nega-
tive RE values, which indicate underprediction by the mod-
el, and the rest of the data sets yielded positive RE values,
indicating overprediction against independent data.

Figures 1 and 2 include example growth curves from
the broth-based PMP model predictions and the actual mi-
crobial log counts for growth of E. coli O157:H7 in ground
beef. Figure 1 illustrates a case (RI 5 1.19) where the mod-
el did not provide an accurate prediction of the data from
beef under the given growth conditions. A relatively robust
prediction of the PMP model is shown in Figure 2, where
RI 5 0.52 for the given experimental conditions, although
most of the independent data are outside the 95% confi-
dence interval (CI). Conceptually, the lower and upper lim-
its or bands of the 95% CI are the predicted values 6 (1.96
3 SEC); however, this definition does not apply to the out-
put from the PMP. The 95% CIs provided by the PMP (as
illustrated in Figs. 1 and 2) reflect only the uncertainty in
the secondary models and therefore do not include the orig-
inal experimental error or the inherent uncertainty in the
primary model. In contrast, the SEC (which is reflected in
the RI) is based on the total uncertainty of the model pre-
diction (which includes experimental error, primary model
error, and secondary model error).

An analysis of variance indicated that temperature sig-
nificantly affected (a 5 0.05) the RI in this study (Fig. 3).
At temperatures between 15 and 408C, the RI was close to
and less than 1, suggesting that the E. coli O157:H7 aerobic
growth model from PMP is relatively robust under these
conditions for predicting E. coli O157:H7 growth in ground
beef, although the RE in this range indicated underpredic-
tion (Fig. 4). Overall, examination of the 1,178 data points
(i.e., individual observations of microbial counts) from 132
data sets (Fig. 5) also indicated that the model generally
underpredicted the data from ground beef.

http://www.combase.cc
http://www.combase.cc
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TABLE 1. Robustness index (RI) and mean relative error (RE) of the PMP broth-based aerobic growth model for E. coli O157:H7
using data for ground beef under various experimental conditions

Source
ComBase
keycode Strain

Temp
(8C) pH RI RE

ComBase
ComBase
ComBase
ComBase
ComBase

EcGBp5p1
EcGBp5p2
EcGBp5p3
EcGBp6p9a
EcGBp6p9b

Mixed
Mixed
Mixed
DB1358
DB1358

4.8
4.8
4.8
6
6

5.8
5.8
5.8
5.8
5.8

2.99
2.91
2.97
0.70
0.71

0.52
0.49
0.49
0.08
0.08

ComBase
ComBase
ComBase
ComBase
ComBase

EcGBp6p10a
EcGBp6p10b
EcGBp6p1a
EcGBp6p1b
EcGBp6p5a

GFP80EC
GFP80EC
OB1340
OB1340
OB1423C

6
6
6
6
6

5.8
5.8
5.8
5.8
5.8

1.60
2.11
2.57
2.55
2.31

0.19
0.24
0.35
0.37
0.31

ComBase
ComBase
ComBase
ComBase
ComBase

EcGBp6p5b
EcGBp6p6a
EcGBp6p6b
EcGBp6p2a
EcGBp6p2b

OB1423C
OB1514CI
OB1514CI
OB90520A
OB90520A

6
6
6
6
6

5.8
5.8
5.8
5.8
5.8

1.56
1.86
1.92
1.51
0.78

0.22
0.23
0.21
0.21
0.09

ComBase
ComBase
ComBase
ComBase
ComBase
ComBase

EcGBp6p7a
EcGBp6p7b
EcGBp6p8a
EcGBp6p8b
EcGBp6p4a
EcGBp6p4b

OB1680G
OB1680G
OB1533A
OB1533A
OB1525C
OB1525C

6
6
6
6
6
6

5.8
5.8
5.8
5.8
5.8
5.8

1.40
1.59
0.94
1.45
1.59
1.50

0.13
0.16
0.09
0.19
0.24
0.22

ComBase
ComBase
ComBase
ComBase
ComBase

EcGBp6p3a
EcGBp6p3b
EcGBp8p2a
EcGBp8p2b
EcGBp8p7a

OB141412
OB141412
OB90520A
OB90520A
OB1680G

6
6
8
8
8

5.8
5.8
5.8
5.8
5.8

1.56
1.06
0.32
0.30
0.39

0.21
0.14
0.04
0.04
0.05

ComBase
ComBase
ComBase
ComBase
ComBase

EcGBp8p7b
EcGBp8p8a
EcGBp8p8b
EcGBp8p4a
EcGBp8p4b

OB1680G
OB1533A
OB1533A
OB1525C
OB1525C

8
8
8
8
8

5.8
5.8
5.8
5.8
5.8

0.41
0.52
0.52
0.30
0.28

0.05
0.07
0.07
0.03
0.03

ComBase
ComBase
ComBase
ComBase
ComBase

EcGBp8p6a
EcGBp8p6b
EcGBp8p5a
EcGBp8p5b
EcGBp8p1a

OB1514CI
OB1514CI
OB1423C
OB1423C
OB1340

8
8
8
8
8

5.8
5.8
5.8
5.8
5.8

0.73
0.75
0.13
0.11
0.48

0.09
0.10

20.01
20.02

0.07
ComBase
ComBase
ComBase
ComBase
ComBase

EcGBp8p1b
EcGBp8p10a
EcGBp8p10b
EcGBp8p9a
EcGBp8p9b

OB1340
GFP80EC
GFP80EC
DB1358
DB1358

8
8
8
8
8

5.8
5.8
5.8
5.8
5.8

0.49
0.68
0.64
0.61
0.60

0.07
0.09
0.08
0.08
0.09

ComBase
ComBase
ComBase
ComBase
ComBase

EcGBp8pa
EcGBp8pb
EcGBp8pc
EcGBp8p4
EcGBp8p5

Mixed
Mixed
Mixed
Mixed
Mixed

8
8
8
8
8

5.8
5.8
5.8
5.8
5.8

1.21
1.20
1.21
1.16
1.13

0.16
0.15
0.17
0.13
0.12

ComBase
ComBase
ComBase
ComBase
ComBase

EcGBp8p6
EcGBp8p3a
EcGBp8p3b
EcGBp10pa
EcGBp10pb

Mixed
OB141412
OB141412
Mixed
Mixed

8
8
8

10
10

5.8
5.8
5.8
5.8
5.8

1.12
0.38
0.35
1.19
1.19

0.11
0.05
0.04

20.41
20.41

ComBase
ComBase
ComBase
ComBase
ComBase

EcGBp11pa
EcGBp11pb
EcGBp11pc
EcGBp12pa
EcGBp12pb

Mixed
Mixed
Mixed
Mixed
Mixed

11
11
11
12
12

5.8
5.8
5.8
5.8
5.8

0.69
0.79
0.70
1.38
1.34

20.20
20.24
20.19
20.45
20.42

ComBase
ComBase
ComBase

EcGBp12pc
EcGBp15pa
EcGBp15pb

Mixed
Mixed
Mixed

12
15
15

5.8
5.8
5.8

1.18
0.92
0.84

20.35
20.24
20.21
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TABLE 1. Continued

Source
ComBase
keycode Strain

Temp
(8C) pH RI RE

ComBase
ComBase
ComBase
ComBase
ComBase
ComBase
ComBase

EcGBp15pc
EcGBp20pa
EcGBp20pb
EcGBp20pc
EcGBp20apa
EcGBp20apb
EcGBp20apc

Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed

15
20
20
20
20
20
20

5.8
5.8
5.8
5.8
5.8
5.8
5.8

0.91
0.84
0.80
0.84
0.78
0.74
0.78

20.24
20.22
20.20
20.21
20.20
20.18
20.19

ComBase
ComBase
ComBase
ComBase
ComBase

EcGBp25pa
EcGBp25pb
EcGBp25pc
EcGBp30pa
EcGBp30pb

Mixed
Mixed
Mixed
Mixed
Mixed

25
25
25
30
30

5.8
5.8
5.8
5.8
5.8

0.65
0.66
0.62
0.53
0.55

20.14
20.14
20.13
20.12
20.12

ComBase
ComBase
ComBase
ComBase
ComBase

EcGBp30pc
EcGBp37pa
EcGBp37pb
EcGBp37pc
EcGBp40pa

Mixed
Mixed
Mixed
Mixed
Mixed

30
37
37
37
40

5.8
5.8
5.8
5.8
5.8

0.52
0.71
0.74
0.70
0.90

20.12
20.16
20.17
20.15
20.20

ComBase
ComBase
ComBase
ComBase
ComBase

EcGBp40pb
EcGBp40pc
EcGBp42pa
EcGBp42pb
EcGBp42pc

Mixed
Mixed
Mixed
Mixed
Mixed

40
40
42
42
42

5.8
5.8
5.8
5.8
5.8

1.05
1.07
1.25
0.91
1.18

20.28
20.29
20.36
20.20
20.34

ComBase
ComBase
ComBase
ComBase
ComBase

EcGBp44pa
EcGBp44pb
EcGBp44pc
EcGBp44p2a
EcGBp44p2b

Mixed
Mixed
Mixed
OB90520A
OB90520A

44
44
44
44
44

5.8
5.8
5.8
5.8
5.8

1.40
1.35
1.56
1.08
1.19

20.41
20.39
20.50
20.26
20.31

ComBase
ComBase
ComBase
ComBase
ComBase

EcGBp44p7a
EcGBp44p7b
EcGBp44p8a
EcGBp44p8b
EcGBp44p4a

OB1680G
OB1680G
OB1533A
OB1533A
OB1525C

44
44
44
44
44

5.8
5.8
5.8
5.8
5.8

1.17
1.25
1.29
1.33
1.26

20.33
20.37
20.37
20.39
20.40

ComBase
ComBase
ComBase
ComBase
ComBase

EcGBp44p4b
EcGBp44p6a
EcGBp44p6b
EcGBp44p5a
EcGBp44p5b

OB1525C
OB1514CI
OB1514CI
OB1423C
OB1423C

44
44
44
44
44

5.8
5.8
5.8
5.8
5.8

1.23
1.33
1.08
1.10
0.95

20.35
20.39
20.26
20.27
20.20

ComBase
ComBase
ComBase
ComBase
ComBase

EcGBp44p1a
EcGBp44p1b
EcGBp44p10a
EcGBp44p10b
EcGBp44p9a

OB1340
OB1340
GFP80EC
GFP80EC
DB1358

44
44
44
44
44

5.8
5.8
5.8
5.8
5.8

0.78
0.69
1.08
1.12
1.16

20.18
20.14
20.26
20.27
20.30

ComBase
ComBase
ComBase
ComBase
ComBase

EcGBp44p9b
EcGBp44p3a
EcGBp44p3b
EcGBp45p5a
EcGBp45p5b

DB1358
OB141412
OB141412
OB1423C
OB1423C

44
44
44
45
45

5.8
5.8
5.8
5.8
5.8

1.21
0.98
1.11
1.44
1.31

20.32
20.24
20.28
20.47
20.38

ComBase
ComBase
ComBase
ComBase
ComBase

EcGBp45p9a
EcGBp45p9b
EcGBp45p1a
EcGBp45p1b
EcGBp45p10a

OB1358
OB1358
OB1340
OB1340
GFP80EC

45
45
45
45
45

5.8
5.8
5.8
5.8
5.8

1.29
1.33
0.93
1.17
1.20

20.44
20.44
20.28
20.43
20.35

ComBase
ComBase
ComBase
ComBase
ComBase

EcGBp45p10b
EcGBp45p3a
EcGBp45p3b
EcGBp45p2a
EcGBp45p2b

GFP80EC
OB141412
OB141412
OB90520A
OB90520A

45
45
45
45
45

5.8
5.8
5.8
5.8
5.8

1.43
1.44
1.22
1.50
1.37

20.47
20.46
20.36
20.50
20.43

ComBase
ComBase
ComBase

EcGBp45p7a
EcGBp45p7b
EcGBp45p8a

OB1680G
OB1680G
OB1533A

45
45
45

5.8
5.8
5.8

1.27
1.23
1.29

20.39
20.35
20.41
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TABLE 1. Continued

Source
ComBase
keycode Strain

Temp
(8C) pH RI RE

ComBase
ComBase
ComBase
ComBase
ComBase
Vold et al. (23)
Vold et al. (23)

EcGBp45p8b
EcGBp45p4a
EcGBp45p4b
EcGBp45p6a
EcGBp45p6b

OB1533A
OB1525C
OB1525C
OB1514CI
OB1514CI
Mixed
Mixed

45
45
45
45
45
12
12

5.8
5.8
5.8
5.8
5.8
5.5
5.5

1.23
1.34
1.47
1.41
1.43
1.18
0.93

20.37
20.41
20.47
20.46
20.47

0.14
0.03

Tamplin (21)
Tamplin (21)
Tamplin (21)
Walls and Scott (24)
Walls and Scott (24)
Walls and Scott (24)

Mixed
Mixed
Mixed
Mixed
Mixed
Mixed

10
10
10
12
20
35

5.9
5.9
5.9
5.7
5.7
5.7

0.97
1.01
0.86
0.44
0.72
0.66

20.28
20.28
20.26
20.02
20.17
20.13

FIGURE 1. Comparison of predictions of the Pathogen Modeling
Program (PMP) broth-based growth model and observed example
microbial counts for E. coli O157:H7 in beef at 108C, pH 5.8,
and aw of 0.99 (broken lines indicate 95% confidence limit of
prediction, as reported by the PMP).

FIGURE 2. Comparison of predictions of the Pathogen Modeling
Program (PMP) broth-based growth model and example observed
microbial counts of E. coli O157:H7 in beef at 308C, pH 5.8, and
aw of 0.99 (broken lines indicate 95% confidence limit of predic-
tion, as reported by the PMP).

DISCUSSION

The objective of this work was to demonstrate the ap-
plication of a quantitative measure of robustness to a mi-
crobial growth model. In particular, the PMP aerobic
growth model for E. coli O157:H7 in broth was used as a
test model against published experimental data for E. coli
O157:H7 growth in ground beef. The proposed procedure
assessed the robustness of the growth model for E. coli
O157:H7 by comparing actual microbial log counts from
independent data sets with the corresponding predicted val-
ues from the model.

The RI can be interpreted as an objective measure of
a microbial model’s predictive accuracy based on expected
performance (SEC) and actual performance (SEP) in pre-
dicting bacterial populations. If the RI is less than 1, this
means that the independent data were described more ac-
curately by the model than were the data used to create the

model. An RI of zero would indicate perfect agreement
between predictions and observations (regardless of the
SEC).

There are two unique features of the proposed method
for robustness evaluation. The first is the use of microbial
log counts from an independent data set to test a predictive
model. This approach is different from that of previous in-
vestigations (2, 19), wherein model robustness was de-
scribed in terms of estimated model parameters (e.g., max-
imum growth rate or lag time). Although these other ap-
proaches are reasonable, they consider only a portion of the
overall behavior of microbial growth (e.g., secondary mod-
el of growth rate or generation time as a function of envi-
ronmental variables) and do not quantify the overall pre-
dictive capability of a model, which depends on all the
model parameters and both the primary and secondary
model forms.
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FIGURE 3. Robustness index (RI) as a function of temperature.
FIGURE 4. Mean relative error (RE) as a function of tempera-
ture.

FIGURE 5. Predicted versus observed microbial log counts of E.
coli O157:H7 in ground beef.

The second unique feature of the RI is that it quantifies
the predictive accuracy (SEP) of a model relative to the
expected accuracy (SEC), which is derived from data used
in model development. For example, consider a scenario
where the growth model (model A) has an expected error
(SEC) of 0.2 log CFU/g and a second growth model (model
B) has an expected error (SEC) of 0.9 log CFU/g. Taking
the conventional approach, model A would be judged the
superior model. However, now consider the scenario where
validation against independent data reveals that the predic-
tive accuracies (SEP) of models A and B are 0.8 and 1.0
log CFU/g, respectively. Now, model B (RI of approxi-
mately 1.1) could be judged the superior model because its
performance was more consistent with expectations than
was that of model A (RI of approximately 4.0). If a user
had selected model A based only on the better expected
accuracy (0.2 versus 0.9 log CFU/g), then that user might
have made decisions based on presumed confidence inter-
vals that are (unknowingly) too optimistic, which presents
a risk of fail-dangerous decisions. However, a user who
selected model B would have lower expected accuracy and,
therefore, would be making decisions based on a model that
performs more closely to expectations (i.e., RI of approx-
imately 1.1). In other words, for actual application of a
predictive microbial model to risk analysis (or other use),
indices of model performance based solely on data used to
parameterize the model are insufficient for evaluating the
robustness of the model.

It is commonly believed that predictive models based
on monoculture microbial data measured in synthetic lab-
oratory media overestimate the growth of microorganisms
in food, and it is assumed that the media are in most cases
optimal for growth. Although growth rates could be over-
estimated by broth-based models, for E. coli O157:H7 the
counts can actually be underestimated. For example, if a
model yields an accurate prediction of growth rate but an
inaccurate prediction of lag time, then the overall predic-
tions of microbial counts could be significantly faulty (e.g.,
Fig. 1). Although the RI does not indicate whether observed
counts lie above or below the predicted counts, the mean

RE provides this information. As defined here, negative RE
values indicate that the growth model underpredicts inde-
pendently observed count data. Positive values indicate an
overprediction against independent data being considered.
Results of this study indicate that for growth experiments
conducted at temperatures .108C, except for two cases at
128C, the broth-based PMP model underpredicts (negative
RE) the growth of E. coli O157:H7 in beef (Table 1 and
Fig. 4). The plot of predicted versus actual microbial log
counts (Fig. 5) for growth of E. coli O157:H7 in beef sup-
ports this claim, because most of the data points (779 of
1,178) fall below the line of equivalence.

An interesting trend in the behavior of predicted and
observed log counts is shown in Figure 5. Ideally, if the
points fall on the line of equivalence (line y 5 x), then the
model predicts log counts perfectly. The difference between
points and the line of equivalence is a measure of the in-
accuracies of the respective predictions. In this study, data
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on the growth of E. coli O157:H7 in beef tended to form
a curve that is concave upward, with lowest (initial points)
and highest (end points) log counts converging toward the
line of equivalence. High accuracy was observed at the
starting points (which corresponds to initial microbial lev-
els, N0), given that these values are usually fixed and
known. Reasonable accuracy was also observed toward the
end points (which correspond to the asymptotic value of
the Gompertz model) because these values are not signifi-
cantly affected by experimental variables (7). Between the
lowest and highest log counts, predictions were highly in-
accurate, with low predicted log counts compared with ac-
tual log counts. In this intermediate range, the impact of
the errors contributed by multiple model parameters (e.g.,
specific growth rate or lag time) are maximum, contributing
to greater inaccuracies of the predicted values.

One potential use of the RI is for evaluating the effect
of various experimental factors on model performance with
independent data. Analysis of variance indicated a signifi-
cant temperature effect (a 5 0.05) on RI in this study,
which implies a problem with robustness across this do-
main. The plot of RI against temperature (Fig. 3) indicates
that at temperatures between 15 and 408C the RI was close
to and less than 1, indicating that under these conditions
the E. coli O157:H7 aerobic growth model from the PMP
is relatively robust (although it underpredicted microbial
counts in that range). RI may be related to pH, water ac-
tivity, and other experimental factors (e.g., fat percentage
or microbial strain). However, for this study, the ranges of
these factors were too limited to make a reasonable con-
jecture. Information about relationships between RI and
various experimental factors can have many implications
for conducting reliable risk assessments.

The RI provides an objective measure of the relative
robustness or predictive ability of a complete microbial
growth model (primary plus secondary). The average RE
provides important additional information on whether the
model overpredicts or underpredicts an independent set of
data. Before a model is used to predict the behavior of a
pathogen under different conditions, particularly in actual
food products, it is essential that the robustness of a micro-
bial growth model be evaluated.
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